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occurred at —1.7 eV vs. Ag quasi-reference electrode, implying that oxi­
dation by Cd(II) should occur readily. The possibility of ring opening by 
further photoinduced reduction of 3 to a radical dianion is unlikely in view 
of this potential. Although Newcomb et al. have shown that opening by a 
radical anion route occurs rapidly if a neutral aryl cyclopropane is treated 
with strong base,16 this route to ring-opened product appears to be unim­
portant if 3 is generated with lithium diisopropylamide. 3 can be essentially 
quantitatively methylated if the solution of 3 in THF is quenched by methyl 
iodide.17 

(15) Cd(II) has been used previously in oxidative dimerization of anions: Harvey, 
R. G.; Cho, H. J. Am. Chem. Soc. 1974, 96, 2434. 

(16) Newcomb, M; Seidel, T.; McPherson, M. B. J. Am. Chem. Soc. 1979 101, 
777. 

(17) Boche, G.; Martens, D. Angew. Chem., Int. Ed. Engl. 1972, 11, 724. 
(18) A1H NMR spectrum of the dimeric fraction (m/e 438) exhibited signals in 

the vinylic region. 
(19) Upon photoexcitation, 9 reacts at least three times more slowly than does 

3, despite the similarity of their absorption spectra. The absence of red 
color in the photolysis mixture indicates that its disappearance proceeds 
through intermediates different from 4 and/or 5. 
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Formation of the Norrish Type II 
Products from the Biacetyl-Sensitized Photolysis 
of Valerophenone Diperoxide 

Sir: 

In connection with the chemistry of high-energy-content 
molecules which contain an intramolecular probe for excita­
tion,2 we have recently reported113 that the triplet excited state 
of valerophenone (2) may be formed by the thermal and bi­
acetyl-sensitized decomposition of valerophenone diperoxide 
(1) (eq 1). We now report evidence that acetophenone (3), one 
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of the Norrish type II products of 2,3 comes from a 1,4 birad-
ical (BR) which is formed directly by the biacetyl-sensitized 
decomposition of 1 without going through triplet valerophe­
none. 

The type II reaction of 2 in benzene is known to occur from 
the triplet n,7r* excited state of 2 to produce exclusively the 1,4 
biradical (k] ~ 1.3 X 108 s - 1 ) which (a) disproportionates 
back to 2 (Ar4 ~ 1.8 X 107 s_ 1) , (b) fragments to 3 and pro­
pylene (A-3 ~ 1 X 107 s_ 1) , or (c) closes to form 2-methyl-l-
phenylcyclobutanol (6) (k2 ~ 0.2 X 107 s - 1 ) . 3 

A solution of I 4 in benzene ( ~ 1 0 - 2 M) containing various 
concentrations of biacetyl as a sensitizer (0.01-2.3 M) was 
irradiated with light of >400-nm wavelength under bubbling 
nitrogen to give valerophenone (2), acetophenone (3), "y-hy-
droxyvalerophenone (4), l-phenylpentane-l,4-dione (5), and 

Table I. Biacetyl-Sensitized Photolysis of 
Valerophenone Diperoxide (1) in Benzene0 

biacetyl, 
M 

0.010 
0.034 
0.225 
0.46 
1.15 
2.30 

irradn 
time, h 

18 
10 
10 
11 
8 
8.5 

2 

15 
23 
27 
29 
20 
12 

prod 
3 

9 
15 
24 
33 
27 
22 

nets, 
4 

6 
5 
5 
8 
9 
7 

%b.c 

5 

11 
17 
10 
13 
8 
7 

Ph2 

25 
31 
19 
10 
3 
2 

recovd 
1,%* 

83 
82 
74 
76 
76 
75 

a Irradiations were carried out with a 400-W high-pressure mercury 
lamp through a 10% sodium nitrite solution (>400 nm) at room 
temperature under bubbling nitrogen which was deoxygenated by 
passing through an alkaline pyrogallol solution. A control experiment 
was done in every case. * Estimated errors ±50%. c The yield of 2-
methyl-1-phenylcyclobutanol (6) was negligibly small.7 

biphenyl (Table I) in addition to a small yield of butyl benzoate 
(<5%).5 In a separate experiment all of these products were 
isolated and identified by direct comparisons with authentic 
samples. Traces of phenyl valerate could occasionally be de­
tected (<2%). 

It should be noted that the yield of 3 did not decrease or even 
increase with increasing concentration of biacetyl, indicating 
that triplet valerophenone is not a precursor of 3. The biacetyl 
would have quenched any triplet valerophenone, since &q(2*3 

-»• biacetyl) ~ 1.5 X 109 M - 1 s~' in benzene.6 

Our VPC showed that there was formed only a negligible 
amount of the other type II product (6).7 However, we believe 
that 3 was formed via the 1,4 biradical, since 4 and 5 were 
produced simultaneously with 3. The production of 4 and 5 can 
be rationalized by assuming that BR is trapped in a solvent 
cage with oxygen which may be formed together with BR from 
the decomposition of the peroxide 1 (eq 2a) .8 Recently Small 
and Scaiano9 have shown that oxygen interacts with the 1,4 
biradical with k$ ~ 8.4 X 109 M - 1 s - 1 in benzene. As was 
suggested by them,9 we found that irradiation of 2 in benzene 
under bubbling oxygen, followed by treatment of the reaction 
mixture with triphenylphosphine, produced 4 (7%) and 5 
(0.5%) along with 3 (83%) and 6 (9%).10 
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The intermediacy of the biradical in the biacetyl-sensitized 
photolysis of the peroxide 1 also seems corroborated by the 
effect of alcohol; the quantum yield of 3 from the sensitized 
photolysis of 1 in benzene increased with increasing concen­
tration of added tert-buty] alcohol or 3-ethyl-3-pentanol, as 
is expected from Wagner's report.11,12 

Biphenyl quenches biacetyl phosphorescence inefficiently 
with &q(biacetyl*3 - * biphenyl) ~ 3.2 X 103 M - 1 s - 1 in ben­
zene6 and quenches the type II reaction of 2 efficiently with 
A:q(2*3 — biphenyl) ~ 1.4 X 109 M - 1 s"1 in benzene.6 The 
formation of 3 from the biacetyl-sensitized photolysis of 1 in 
benzene (0.11 or 0.057 M biacetyl) was somewhat quenched 
by diphenyl (0.05-0.5 M), and the quenching data are totally 
explicable in terms of the quenching of triplet biacetyl,13 not 
triplet valerophenone. It is now quite reasonable to conclude 
(1) that the decomposition of peroxide 1 is initiated by triplet 
biacetyl to result in the efficient formation of 3 without the 
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Figure 1. Energy diagram for the conversion 1 + biacetyl*3 -» 2 + BR 
+ O2 + biacetyl.14 

intermediacy of triplet valerophenone; and (2) that the 1,4 
biradical is most probably a precursor of 3. 

Another striking feature of the results in Table I is that the 
distribution of products 3-6, all of which can be ascribed to BR 
(eq 1), is definitely different from that obtained from the 
photolysis of 2 in benzene in the absence3, ' ' or presence9 of 
oxygen. From consideration of spin selection and the energetics 
of the conversion 1 + biacetyl*3 —* 2 + BR + O2 + biacetyl, 
the multiplicities of BR and O2 seem to be singlet (' BR) and 
triplet (3Oi), respectively (Figure I).1 4 Formation of 3BR and 
'02 seems energetically difficult. If this assumption holds true, 
BR derived from the decomposition of 1 (1BR) can be distin­
guished from the type II 1,4 biradical, which is initially pro­
duced in a triplet state (3BR). This difference in the BR mul­
tiplicity may explain why, in the case of the biacetyl-sensitized 
decomposition of 1, the yield of 6 is unusually small.18 The 
much larger yields of 7-oxidation products 4 and 5 from 1 than 
expected from Scaiano's spin statistical consideration9'20 may 
be due to the simultaneous occurrence of the reaction 3.8 We 
must conduct further quantitative experiments to clarify these 
problems, because the biacetyl-sensitized decomposition of 1 
is fundamentally different from the photolysis of 2 in that BR, 
O2, 2, and/or biacetyl would be within the same solvent cage 
at the moment of their production by the fragmentation of 
I.21 

Direct irradiation of 1 in hexane (~ 1O-2 M) under bubbling 
nitrogen was carried out at 254 nm to give 2 (29%), 3 (41%), 
and the cyclobutanol 6 (5%) as the major products. Since 4 and 
5 could not be detected in the reaction mixture, in sharp con­
trast to the biacetyl sensitization (Table I), 3 must have been 
formed by the direct photolysis of 2 which had escaped from 
the solvent cage. Alternatively, singlet-sensitized decomposi­
tion of 1 by pyrene in benzene (2.9 X 1O-2 M pyrene, >350-nm 
irradiation wavelength) gave 2 (95%) but only a small yield 
of 3 (<2%). Pyrene is known to act as a singlet sensitizer for 
the decomposition of tetramethyldioxetane.22 The fluorescence 
of pyrene was found to be quenched by 1 with fcqr ~ 14 M - 1 

in benzene. These facts lead us to conclude that a major de­
composition path from the Ti state of 1 (biacetyl sensitization) 
is eq 2a and one from the Si state of 1 (direct irradiation and 
pyrene sensitization) is eq 2b. 
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